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EXPERT INSIGHT

The history of cord blood 
transplantation/biology & perspective 
for future efforts to enhance the field

Hal E Broxmeyer

Cord blood hematopoietic stem and progenitor cells have been used 
successfully for hematopoietic cell transplantation to treat a variety of 
malignant and non-malignant disorders. Use of cord blood has advan-
tages and disadvantages as a source of transplantable cells compared 
to that of bone marrow and mobilized peripheral blood. Most recently, 
haplo-identical transplants have been competing with cord blood as a 
source of transplanted cells. Efforts are ongoing to modulate cord blood 
and recipients of cord blood transplantation for more efficacious trans-
plant outcomes, in part in order to overcome the slower time to neutro-
phil, platelet and immune cell recovery of these compared to the other 
sources of transplantable cells. This review briefly describes the history 
of cord blood biology and hematopoietic cell transplantation, efforts to 
collect more stem cells and to expand and better allow them to home to 
the bone marrow for more efficient and rapid engraftment. A personal 
perspective for future efforts in these areas is also provided.
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HISTORY
The origins of the field of cord blood 
(CB) hematopoietic cell transplan-
tation (HCT) have been previously 
reviewed [1–3]. In short, it started 
with our work that determined 
that numbers of hematopoietic 

progenitor cells (HPCs) in single 
CB unit collections were within the 
range of those numbers of HPCs 
that were associated with successful 
bone marrow (BM) HCT, and that 
it was possible to successfully freeze/
cryopreserve and then have high 

efficiency recovery of the frozen 
hematopoietic stem cells (HSCs)/
HPCs [4]. We now know that these 
cells can be retrieved at high effi-
ciency after more than 23 years [5]. 
This original work [4] led to the first 
proof-of-principle CB bank in the 
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author’s laboratory that assessed the 
content of HPCs within CB units 
sent from a distant obstetrical unit, 
and then froze the cells for use for 
HLA-matched sibling CB trans-
plants [6]. The scientific paper that 
led to the first CB transplant was a 
collaborative national effort [4], and 
the first CB transplant itself, per-
formed in Paris, France, with cells 
collected in Durham, NC, and sent 
to our laboratory for assessment and 
freezing prior to hand-delivery to 
the Hopital St Louis in Paris, was 
an international collaborative effort 
[6]. The first recipient of the CB 
transplant in October 1988 in Paris 
is still alive and well. Cryopreserved 
CB units from the first CB bank in 
my laboratory were then used for 
the next four CB transplants in Par-
is (n = 2), Baltimore and Cincinna-
ti, as well as two more of the next 
five transplants [7–9].

The field of CB HCT has come 
a long way since these initial labora-
tory research and clinical efforts in 
terms of the transplants themselves 
[1,2] and our much-improved under-
standing of the biology of HSCs and 
HPCs and their regulation [10–12]. 
CB HCTs went from HLA-matched 
sibling transplants to partially 
matched related, and then to HLA-
matched or partially HLA-disparate 
unrelated CB transplants. There have 
been more than 40,000 CB HCTs 
performed since our initial efforts, 
which have now treated a large vari-
ety of malignant and non-malignant 
disorders [1,2,13,14]. While there are 
many advantages to use of CB, versus 
either BM- or mobilized peripheral 
blood for transplantation, including 
ready availability of the units and 
lower levels of acute graft-versus-host 
disease, there are concerning disad-
vantages to the use of CB that have 
limited its use. These include slower 

time to neutrophil, platelet and im-
mune cell recovery. Because of the 
low numbers of HSCs and HPCs 
in single collections of CB, clinical 
efforts moved to use of double CB 
unit transplants, which helped move 
the field to greater use of CB HCT 
for adults [15–17]. Double CB HCT 
was also utilized for children al-
though there is currently no evidence 
to date that the time to engraftment 
is any faster with double compared 
to single CB HCTs for either adults 
or children [15–19]. Haploidentical 
(haplo) transplants [20–23] have re-
cently competed with CB as a source 
of transplantable cells for HCT. The 
engraftment of haplo-transplants is 
more rapid than CB, and the use of 
haplo HCT may have an up-front 
economic advantage, regarding less 
monetary cost. However, the relapse 
rates after haplo transplants may be 
higher than with CB HCT, so it 
remains to be determined how in 
actuality haplo-HCT compares to 
that of CB HCT in terms of over-
all patient benefit, including relapse 
and survival rates of the patients, and 
the long-term costs of the transplant 
for society. Some investigators have 
begun using haplo-transplants in 
combination with a CB unit in order 
to elicit a more rapid up-front en-
graftment using haplo cells, with the 
longer-term engraftment apparently 
being mediated from the CB unit 
[24,25]. This combination of both a 
haplo and a CB unit for HCT has 
interesting possibilities, but it may 
be that scientific advances in the near 
future will obviate the need for this 
combination cell therapy, perhaps 
resulting in a single unit CB HCT 
eventually becoming  the cell type of 
choice for all HCTs for a number of 
reasons, including economical ones. 
Efforts to counter the disadvantages 
of single unit CB HCT are currently 
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underway in a number of research 
laboratories, and these efforts are 
covered in this review, along with a 
perspective on future efforts.

LABORATORY & CLINICAL 
EFFORTS TO ENHANCE  
CB HCT
The goals are to collect more highly 
potent HCSs and HPCs in single 
CB units, to effectively expand the 
collected cells and/or to enhance 
the homing efficiency of these cells 
so that they more efficiently travel 
to BM microenvironment niches, 
where they must reach for nurtur-
ing of the engrafted cells for both 
rapid and sustained long-term en-
graftment. Once in the BM, stro-
mal-cell– and cytokine/chemo-
kine–HSC/HPC interactions 
influence the self-renewal, survival, 
proliferation and differentiation 
capacities of the HSCs and HPCs 
[10–12]. Ultimately what is needed 
is the most efficient and cost-effec-
tive means to enhance single unit 
CB HCT. At best, this will entail 
the simplest procedures that can be 
carried out at any, and not just at se-
lected, CB collection and transplant 
centers. 

ENHANCING CB HSC 
COLLECTIONS
Most transplant centers request the 
largest CB collection available in CB 
banks for the closest donor HLA 
match to the recipient. It is left up to 
the staff where the CB collections are 
made to maximize the volume of CB 
collected. Recently, the American 
College of Obstetricians and Gyne-
cologists released a position state-
ment on delayed CB clamping that 

recommended an interval of 30–60 
seconds after delivery of healthy 
term babies (see Cord Blood Asso-
ciation website), which means that a 
lesser volume of CB will be collect-
ed, which in turn means that fewer 
HSCs and HPCs will be present in 
the collected CB units. However, 
there are still ways to enhance the 
collection of HSCs even if clamp-
ing is delayed. One way that was 
tried in the laboratory previously is 
to perfuse the CB once the cord is 
separated from the body. This does 
result in collections of increased vol-
umes of CB with increased numbers 
of HSCs and HPCs [26]. However, 
this is a cumbersome procedure that 
is not likely to find widespread use in 
collection centers, and has not been 
used for units stored in either unre-
lated or family (private) CB banks. 
Another more recent innovation 
from the author’s laboratory that 
has resulted in obtaining 2–5-fold 
more HSCs/unit of CB collected 
is the collection and processing of 
cells in hypoxic (e.g., 3%) O2 ten-
sions [27,28], which is more close-
ly related to the oxygen tension of 
the cells within the body (with O2 
tensions in the bone marrow being 
in the range of 1 and 5%, and CB 
being less than 10%, compared to 
collections of cells in ambient air 
of ~21%). This hypoxic collection/
processing of the cells prevents the 
ambient air induced loss of HSCs 
through a phenomenon we termed 
extra physiological oxygen shock/
stress (EPHOSS), which causes the 
very rapid differentiation, rather 
than cell death, of a large proportion 
of HSCs in the CB upon short-term 
exposure to ambient air [27]. Thus, 
CB collected and processed in am-
bient air has fewer HSCs and more 
HPCs, and the HPCs are in rapid 
cell cycle. By contrast, CB collected/
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processed in 3% O2 have more 
HSCs, but fewer HPCs, and these 
HPCs are in a slow or non-cycling 
state. EPHOSS is mediated through 
an intracellular networking axis that 
involves at the least tumor suppres-
sor p53, the mitochondrial per-
meability transition pore (MPTP) 
and cyclophilin D, with hypoxia 
inducing factor (HIF)-1α, and the 
hypoxamir, miR210 playing a role. 
Upon sensing ambient air O2 lev-
els, the MPTP in cells open up with 
resultant release of reactive oxygen 
species (ROS), which induce HSCs 
to differentiate into HPCs. While 
countering EPHOSS by the hypoxic 
collection/processing could obviate 
problems with limiting HSC num-
bers in single CB collections, it is not 
a procedure that lends itself to rou-
tine use at CB collection centers. In 
alternative efforts to block EPHOSS 
induced differentiation, we found 
that if CB is collected/processed in 
air but in the continued presence of 
cyclosporine A (CsA), which main-
tains the MPTP in a closed position 
and reduces release of ROS from the 
mitochondria, one can collect more 
HSCs [27]. CsA would certainly be 
easier to use at CB collection centers 
since this obviates the need for collec-
tion of cells in an hypoxic chamber, 
but such procedures are not without 
problems. CsA is not easy to use, the 
best concentrations of CsA to use for 
each procedure needs to be worked 
out, and may vary with the lot of 
CsA obtained. Also, CsA is toxic to 
cells upon prolonged exposure, so it 
is clear that other means are need-
ed to prevent EPHOSS [27,28]. We 
are currently working on such other 
procedures, including the evaluation 
of small molecule inhibitors of epi-
genetics and autophagy/mitophagy, 
amongst a number of other means 
alone or in combination.

EX VIVO EXPANSION OF 
CB HSCS & HPCS 
Efforts to ex vivo expand numbers 
of HSCs and HPCs have been on-
going for more than 30 years, and 
most recently a number of small 
molecules have been used to ex vivo 
expand these cells in CB. SR1 has 
been effectively used in the labo-
ratory [29], and has shown prom-
ise for clinical translation [30]. 
UM171, is a small molecule that 
in laboratory studies appears more 
potent than SR1 [31]. Clinical tri-
als with UM171 are ongoing, with 
clinical efficacy yet to be reported. 
Both SR1 and UM171 are not by 
themselves effective, but require ad-
dition of selected cytokines for their 
potent ex vivo expansion effects 
[29–31]. Clinical studies have been 
reported using Notch Ligand [32] 

and nicotinamide induced ex vivo 
expansion of CB [33]. The known 
mechanisms for these procedures 
have been elucidated in the individ-
ual papers, but it is clear that com-
plete mechanistic insight into how 
these agents work is yet to be fully 
elucidated. Greater insight into how 
facets of HSC/HPC self-renewal, 
proliferation, survival and differen-
tiation are mediated will no doubt 
provide added efficacy for these pro-
cedures. Other pre-clinical studies 
have also evaluated ex vivo expan-
sion methods [34–36]. It remains 
to be determined which procedures 
will eventually be used on a larger 
scale, and if in fact such procedures 
will be cost effective, as they clearly 
will add costs to CB HCT, which 
already include the cost of the CB 
units themselves and the transplan-
tation procedure. Our lab has also 
worked on means to expand CB 
HSCs and HPCs using Oct4 activa-
tors [37] or cytokines plus inhibition 
of the enzyme Dipeptidylpeptidase 
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(DPP) 4 [38], with additional ef-
forts in progress, including modu-
lating glucose metabolism.  Wheth-
er or not ex vivo expansion will 
eventually be used as a routine ef-
fort is currently not clear. It most 
likely will be performed in selected 
laboratories and by companies. Re-
gardless, we will clearly learn much 
about how HSCs and HPCs are 
regulated, with the possibility that 
this information can in the future 
be used efficaciously to modulate 
the production and differentiation 
of these cells in vivo for quicker 
and more sustained engraftment of 
neutrophils, platelets and immune 
cells. It may actually be that the fu-
ture of enhancing the efficacy of CB 
HCT lies in the in vivo, rather than 
ex vivo, expansion and subsequent 
differentiation of the engrafted cells 
and this is an area of research that 
requires intense investigation.

ENHANCING THE HOM-
ING CAPACITIES OF HSCS
It may be that either or both of the 
enhanced collection of HSCs by 
blocking EPHOSS, or ex vivo ex-
pansion of these HSCs and HPCs 
can be made more effective for CB 
HCT by modulating the capacity 
of these donor cells to better home 
to the BM once they are injected 
into the recipients. There have been 
a number of efforts to enhance the 
homing capabilities of HSCs. These 
include: short term ex vivo enforced 
fucosylation of the cells [39–41], 
prostaglandin (PG) E pretreatment 
[42–44], inhibition of the enzyme 
DPP4 with small molecule inhib-
itors [38,45] or hyperthermia [46]. 
Perhaps using combinations of 
these pretreatment procedures may 
even further enhance the homing 

efficiency of ex vivo treated cells pri-
or to their intravenous infusion.

CXCR4 is a receptor that binds 
and responds to the chemok-
ine, stromal cell derived factor 
(SDF)-1/CXCL12. The SDF-1/
CXCL12-CXCR4 axis has been 
implicated in chemotaxis, migra-
tion, survival and homing of HSCs, 
HPCs and other cell types [47]. 
DPP4 is found within many cell 
types and is present on the cell sur-
face as CD26 [48]. It is also found 
in serum and plasma, and can trun-
cate SDF-1/CXCL12 by removing 
the first two N-terminal amino 
acids where the second amino acid 
is usually an alanine or a proline. 
DPP4 truncated SDF-1/CXCL12 
is much less active as a chemotac-
tic and survival factor than its own 
full length form, and the truncat-
ed form blocks the activity of the 
full length chemokine [38,45,48]. 
Inhibiting DPP4 with small mole-
cules such as the tripeptide Dipro-
tin A (ILE-PRO-ILE), or sitagliptin 
(which is a DPP4 inhibitor used to 
treat Type 2 diabetes), enhances the 
activity of SDF-1/CXCL12 as well 
as other proteins (such as granu-
locyte macrophage [GM] colony 
stimulating factor [CSF], G-CSF, 
interleukin [IL]-3, and erythropoi-
etin [EPO], which are amongst a 
large number of biologically active 
proteins that have DPP4 truncation 
sites) [49,50]. Deletion of the dpp4 
gene or inhibiting dpp4 activity ac-
celerates recovery of hematopoiesis 
in mice from stresses such as sub-le-
thal doses of radiation or chemo-
therapeutic drugs [38]. Moreover, 
treating end-stage patients with 
leukemic or lymphoma with short 
term administration of orally active 
sitagliptin once a day for 4 days 
starting 1 day before administration 
of the CB graft has accelerated time 
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to neutrophil engraftment after sin-
gle unit CB HCT to a median of 21 
days [51,52], and more recent clini-
cal studies adjusting the sitagliptin 
administration to twice a day for 4 
days has significantly shortened the 
time to neutrophil engraftment to 
a median of about 19 days [Farag 

and Broxmeyer, submitted for publi-

cation]. Another means to enhance 
engraftment is to place the recipi-
ents in a hyperbaric chamber prior 
to CB infusion in order to decrease 
O2, as EPO has a negative effect 
on the chemotaxis and homing of 
HSCs and HPCs [53]. We recently 
found that a screen of small-mole-
cule compounds identified gluco-
corticoid (GC) hormone signaling 
as an activator of the expresson of 
the chemokine receptor CXCR4 
in human CB HSCs and HPCs, 
short-term pretreatment of these 
cells with GSs (Dexamethasone, 
Flonase, cortisol, Medrol) promot-
ed the SDF-1/CXCL12-axis me-
diated chemotaxis, homing, and 
long-term engraftment when CB 
CD34+ cells were transplanted into 
primary- and secondary-sublethally 
irradiated NSG immune-deficient 
mice. Mechanistically, the activated 
glucocorticoid receptor binds di-
rectly to a glucocorticoid response 
element in the CXCR4 promoter 
and recruits the SRC-1-p300 com-
plex to promote H4K5 and H4K16 
histone acetylation, thereby facili-
tating transcription of CXCR4 [54].

FUTURE PERSPECTIVES 
FOR CB HCT
It is clear that if the field of CB 
HCT is to be sustained, and more 
importantly to progress, addition-
al laboratory and clinical efforts are 
needed. The laboratory and clinical 

investigators must work together to 
make enhancement of CB HCT a 
reality. This is a very important goal 
that can be realized, but this author 
is convinced that whatever is done in 
order to sustain the field should be 
simple and cost effective. I envision 
a time in the near future when high-
er numbers of more potent HSCs 
will be able to be routinely collected 
through blocking EPHOSS or oth-
er like efforts, for example collect-
ing cells in ambient air with DPP4 
inhibition also results in EPHOSS-
like protective effects with enhanced 
numbers of HSCs [38], but through 
a different mechanism than we re-
ported for EPHOSS protection [Un-

published observations]. The potency 
of the cells can be assessed by lim-
iting dilution of cells in colony as-
says in vitro or engraftment in vivo 
into sub-lethally irradiated immune 
deficient mice [27], and perhaps by 
chemical potency assays [55]. The 
cells will perhaps be expanded, al-
though ex vivo expansion may not 
be needed if the collections contain 
enough increased HSCs. These cells 
could then be either pretreated for a 
few hours ex vivo to enhance their 
engraftment (by fucosylation, PGE, 
DPP4 inhibition, hyperthermia glu-
cocorticoid stimulation, or combina-
tions of these short-term treatments) 
and then infused into recipients who 
may be additionally pretreated to 
enhance self-renewal and/or differ-
entiation of the infused cells (e.g., by 
DPP4 inhibition and/or by precon-
ditioning in a hyperbaric chamber). 
Animal models have already shown 
that a combination of PGE pre-
treatment of cells followed by injec-
tion of these cells into hosts treated 
with sitagliptin (a DPP4 inhibitor) 
results in improved engraftment 
above that of either procedure itself 
[56]. So there is already experimental 



EXPERT INSIGHT 

527Cell & Gene Therapy Insights - ISSN:2059-7800 

precedence for at least one possibly 
easily used combination procedure. 
Table 1 provides the various strategies 
that can be considered for enhance-
ment of CB HCT beyond that of 
the usual currently used method of 
collection/processing in air without 
further manipulations. Any one, 
or combinations, of the procedures 
shown should allow for enhanced 
CB HCT. It is likely that simple and 
uncomplicated procedures that can 
be performed most cost effectively 
in many, not just selected, collection 
and transplant centers will have the 
most sustained beneficial effects on 
enhancing the efficacy of CB HCT. 
It is only with efforts such as these, 

or newer efforts to be determined, 
that the field of CB HCT will con-
tinue to move forward. It is up to 
laboratory and clinical investigators 
working together to make this envi-
sioned future a reality.

FINANCIAL & COMPETING  

INTERESTS DISCLOSURE

Hal E Broxmeyer is on the Medical Scien-
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blood banking company. No writing  as-
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this manuscript.

  f TABLE 1
Strategies for enhancing HSC in cord blood via collection/processing/ex vivo 
manipulations/homing/engraftment.

Ex vivo expansion of donor 
cells
With cytokines plus SRI, 
UM171 or other small 
molecules

Enhance homing of donor cells
Pre-treat donor cells ex vivo with:
DPP4 inhibitor, PGE, fucosylation, 
hyperthermia and/or glucocorticoid 
stimulation

Engraftment: Enhance homing 
in recipient
Pre-condition recipient with:
DPP4 inhibitor or hyperbaric O

2

Usual/standard method in ambient air (normoxia)* induces EPHOSS, ROS production or other  
mechanism, differentiation (more HPCs, fewer HSCs)
X* X* X*
ü X X
X ü X
X X ü
ü ü X
ü X ü

X ü ü
ü ü ü
New method in hypoxia (e.g., 3% O

2
) or in air with CsA or other EPHOSS protective agents blocks 

EPHOSS, ROS production or other mechanism, differentiation (more HSCs, fewer HPCs)
X X X
ü X X
X ü X
X X ü
ü ü X
ü X ü

X ü ü
ü ü ü

*This is current procedure used routinely by most collection and transplant centers where cells are collected under normoxia (~21%) O
2
 

and used without further manipulation of cells or treating the recipient. Shown going from left to right for each column are the efforts 
to be done, alone or in combination. 

ü: To be done; X: Not done.

This work is licensed under 

a Creative Commons Attri-

bution – NonCommercial – NoDerivatives 4.0 

International License
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